Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtre
1.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article Dans Anglais | MEDLINE | ID: covidwho-2050073

Résumé

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Sujets)
COVID-19 , Coronavirus du syndrome respiratoire du Moyen-Orient , Humains , SARS-CoV-2 , Lectines/pharmacologie , Mannose/pharmacologie , Angiotensin-converting enzyme 2 , Glycoprotéine de spicule des coronavirus/pharmacologie , Antiviraux/pharmacologie
2.
EBioMedicine ; 83: 104232, 2022 Sep.
Article Dans Anglais | MEDLINE | ID: covidwho-1996121

Résumé

BACKGROUND: The Omicron BA.2 sublineage has replaced BA.1 worldwide and has comparable levels of immune evasion to BA.1. These observations suggest that the increased transmissibility of BA.2 cannot be explained by the antibody evasion. METHODS: Here, we characterized the replication competence and respiratory tissue tropism of three Omicron variants (BA.1, BA.1.1, BA.2), and compared these with the wild-type virus and Delta variant, in human nasal, bronchial and lung tissues cultured ex vivo. FINDINGS: BA.2 replicated more efficiently in nasal and bronchial tissues at 33°C than wild-type, Delta and BA.1. Both BA.2 and BA.1 had higher replication competence than wild-type and Delta viruses in bronchial tissues at 37°C. BA.1, BA.1.1 and BA.2 replicated at a lower level in lung parenchymal tissues compared to wild-type and Delta viruses. INTERPRETATION: Higher replication competence of Omicron BA.2 in the human upper airway at 33°C than BA.1 may be one of the reasons to explain the current advantage of BA.2 over BA.1. A lower replication level of the tested Omicron variants in human lung tissues is in line with the clinical manifestations of decreased disease severity of patients infected with the Omicron strains compared with other ancestral strains. FUNDING: This work was supported by US National Institute of Allergy and Infectious Diseases and the Theme-Based Research Scheme under University Grants Committee of Hong Kong Special Administrative Region, China.


Sujets)
COVID-19 , SARS-CoV-2 , Bronches , Humains , SARS-CoV-2/génétique , Tropisme viral , Réplication virale
3.
Nature ; 609(7928): 785-792, 2022 09.
Article Dans Anglais | MEDLINE | ID: covidwho-1972633

Résumé

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Sujets)
Acide aspartique , Caspase-6 , Infections à coronavirus , Coronavirus , Cystéine , Interactions hôte-pathogène , Réplication virale , Animaux , Apoptose , Acide aspartique/métabolisme , Caspase-6/métabolisme , Coronavirus/croissance et développement , Coronavirus/pathogénicité , Infections à coronavirus/enzymologie , Infections à coronavirus/virologie , Protéines de la nucléocapside des coronavirus/immunologie , Protéines de la nucléocapside des coronavirus/métabolisme , Cricetinae , Cystéine/métabolisme , Dipeptidyl peptidase 4/génétique , Dipeptidyl peptidase 4/métabolisme , Humains , Interférons/antagonistes et inhibiteurs , Interférons/immunologie , Poumon/anatomopathologie , Mesocricetus , Souris , Coronavirus du syndrome respiratoire du Moyen-Orient , Virus du SRAS , SARS-CoV-2 , Taux de survie , Perte de poids
4.
Cell Discov ; 8(1): 57, 2022 Jun 17.
Article Dans Anglais | MEDLINE | ID: covidwho-1967594

Résumé

The airways and alveoli of the human respiratory tract are lined by two distinct types of epithelium, which are the primary targets of respiratory viruses. We previously established long-term expanding human lung epithelial organoids from lung tissues and developed a 'proximal' differentiation protocol to generate mucociliary airway organoids. However, a respiratory organoid system with bipotential of the airway and alveolar differentiation remains elusive. Here we defined a 'distal' differentiation approach to generate alveolar organoids from the same source for the derivation of airway organoids. The alveolar organoids consisting of type I and type II alveolar epithelial cells (AT1 and AT2, respectively) functionally simulate the alveolar epithelium. AT2 cells maintained in lung organoids serve as progenitor cells from which alveolar organoids derive. Moreover, alveolar organoids sustain a productive SARS-CoV-2 infection, albeit a lower replicative fitness was observed compared to that in airway organoids. We further optimized 2-dimensional (2D) airway organoids. Upon differentiation under a slightly acidic pH, the 2D airway organoids exhibit enhanced viral replication, representing an optimal in vitro correlate of respiratory epithelium for modeling the high infectivity of SARS-CoV-2. Notably, the higher infectivity and replicative fitness of the Omicron variant than an ancestral strain were accurately recapitulated in these optimized airway organoids. In conclusion, we have established a bipotential organoid culture system able to reproducibly expand the entire human respiratory epithelium in vitro for modeling respiratory diseases, including COVID-19.

5.
Nature ; 603(7902): 715-720, 2022 03.
Article Dans Anglais | MEDLINE | ID: covidwho-1661972

Résumé

The emergence of SARS-CoV-2 variants of concern with progressively increased transmissibility between humans is a threat to global public health. The Omicron variant of SARS-CoV-2 also evades immunity from natural infection or vaccines1, but it is unclear whether its exceptional transmissibility is due to immune evasion or intrinsic virological properties. Here we compared the replication competence and cellular tropism of the wild-type virus and the D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) variants in ex vivo explant cultures of human bronchi and lungs. We also evaluated the dependence on TMPRSS2 and cathepsins for infection. We show that Omicron replicates faster than all other SARS-CoV-2 variants studied in the bronchi but less efficiently in the lung parenchyma. All variants of concern have similar cellular tropism compared to the wild type. Omicron is more dependent on cathepsins than the other variants of concern tested, suggesting that the Omicron variant enters cells through a different route compared with the other variants. The lower replication competence of Omicron in the human lungs may explain the reduced severity of Omicron that is now being reported in epidemiological studies, although determinants of severity are multifactorial. These findings provide important biological correlates to previous epidemiological observations.


Sujets)
Bronches/virologie , Poumon/virologie , SARS-CoV-2/croissance et développement , Tropisme viral , Réplication virale , Angiotensin-converting enzyme 2/métabolisme , Animaux , COVID-19/épidémiologie , COVID-19/transmission , COVID-19/virologie , Cathepsines/métabolisme , Chlorocebus aethiops , Endocytose , Humains , Techniques in vitro , SARS-CoV-2/immunologie , Serine endopeptidases/génétique , Serine endopeptidases/métabolisme , Techniques de culture de tissus , Cellules Vero
6.
Nat Commun ; 12(1): 134, 2021 01 08.
Article Dans Anglais | MEDLINE | ID: covidwho-1387323

Résumé

Understanding the factors that contribute to efficient SARS-CoV-2 infection of human cells may provide insights on SARS-CoV-2 transmissibility and pathogenesis, and reveal targets of intervention. Here, we analyze host and viral determinants essential for efficient SARS-CoV-2 infection in both human lung epithelial cells and ex vivo human lung tissues. We identify heparan sulfate as an important attachment factor for SARS-CoV-2 infection. Next, we show that sialic acids present on ACE2 prevent efficient spike/ACE2-interaction. While SARS-CoV infection is substantially limited by the sialic acid-mediated restriction in both human lung epithelial cells and ex vivo human lung tissues, infection by SARS-CoV-2 is limited to a lesser extent. We further demonstrate that the furin-like cleavage site in SARS-CoV-2 spike is required for efficient virus replication in human lung but not intestinal tissues. These findings provide insights on the efficient SARS-CoV-2 infection of human lungs.


Sujets)
Angiotensin-converting enzyme 2/métabolisme , COVID-19/anatomopathologie , COVID-19/transmission , Acides sialiques/métabolisme , Glycoprotéine de spicule des coronavirus/métabolisme , Attachement viral , Animaux , Cellules Caco-2 , Lignée cellulaire tumorale , Chlorocebus aethiops , Cricetinae , Furine/métabolisme , Cellules HEK293 , Héparitine sulfate/métabolisme , Humains , Muqueuse intestinale/métabolisme , Intestins/virologie , Poumon/anatomopathologie , Poumon/virologie , SARS-CoV-2/physiologie , Syndrome respiratoire aigu sévère/anatomopathologie , Cellules Vero , Pénétration virale , Réplication virale/physiologie
7.
Nature ; 593(7859): 418-423, 2021 05.
Article Dans Anglais | MEDLINE | ID: covidwho-1137788

Résumé

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Sujets)
Antiviraux/pharmacologie , Clofazimine/pharmacologie , Coronavirus/classification , Coronavirus/effets des médicaments et des substances chimiques , SARS-CoV-2/effets des médicaments et des substances chimiques , AMP/analogues et dérivés , AMP/pharmacologie , AMP/usage thérapeutique , Alanine/analogues et dérivés , Alanine/pharmacologie , Alanine/usage thérapeutique , Animaux , Anti-inflammatoires/pharmacocinétique , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/usage thérapeutique , Antiviraux/pharmacocinétique , Antiviraux/usage thérapeutique , Biodisponibilité , Fusion cellulaire , Lignée cellulaire , Clofazimine/pharmacocinétique , Clofazimine/usage thérapeutique , Coronavirus/croissance et développement , Coronavirus/pathogénicité , Cricetinae , Helicase/antagonistes et inhibiteurs , Synergie des médicaments , Femelle , Humains , Étapes du cycle de vie/effets des médicaments et des substances chimiques , Mâle , Mesocricetus , Prophylaxie pré-exposition , SARS-CoV-2/croissance et développement , Spécificité d'espèce , Glycoprotéine de spicule des coronavirus/antagonistes et inhibiteurs , Transcription génétique/effets des médicaments et des substances chimiques , Transcription génétique/génétique
8.
Nature ; 586(7827): 113-119, 2020 10.
Article Dans Anglais | MEDLINE | ID: covidwho-672174

Résumé

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Sujets)
Antiviraux/analyse , Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , Infections à coronavirus/traitement médicamenteux , Infections à coronavirus/virologie , Évaluation préclinique de médicament , Repositionnement des médicaments , Pneumopathie virale/traitement médicamenteux , Pneumopathie virale/virologie , AMP/analogues et dérivés , AMP/pharmacologie , Alanine/analogues et dérivés , Alanine/pharmacologie , Pneumocytes/cytologie , Pneumocytes/effets des médicaments et des substances chimiques , Betacoronavirus/croissance et développement , COVID-19 , Lignée cellulaire , Inhibiteurs de la cystéine protéinase/analyse , Inhibiteurs de la cystéine protéinase/pharmacologie , Relation dose-effet des médicaments , Synergie des médicaments , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Humains , Hydrazones , Cellules souches pluripotentes induites/cytologie , Modèles biologiques , Morpholines/analyse , Morpholines/pharmacologie , Pandémies , Pyrimidines , Reproductibilité des résultats , SARS-CoV-2 , Bibliothèques de petites molécules/analyse , Bibliothèques de petites molécules/pharmacologie , Triazines/analyse , Triazines/pharmacologie , Pénétration virale/effets des médicaments et des substances chimiques , Réplication virale/effets des médicaments et des substances chimiques ,
9.
Clin Infect Dis ; 71(6): 1400-1409, 2020 09 12.
Article Dans Anglais | MEDLINE | ID: covidwho-47605

Résumé

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging coronavirus that has resulted in more than 2 000 000 laboratory-confirmed cases including over 145 000 deaths. Although SARS-CoV-2 and SARS-CoV share a number of common clinical manifestations, SARS-CoV-2 appears to be highly efficient in person-to-person transmission and frequently causes asymptomatic or presymptomatic infections. However, the underlying mechanisms that confer these viral characteristics of high transmissibility and asymptomatic infection remain incompletely understood. METHODS: We comprehensively investigated the replication, cell tropism, and immune activation profile of SARS-CoV-2 infection in human lung tissues with SARS-CoV included as a comparison. RESULTS: SARS-CoV-2 infected and replicated in human lung tissues more efficiently than SARS-CoV. Within the 48-hour interval, SARS-CoV-2 generated 3.20-fold more infectious virus particles than did SARS-CoV from the infected lung tissues (P < .024). SARS-CoV-2 and SARS-CoV were similar in cell tropism, with both targeting types I and II pneumocytes and alveolar macrophages. Importantly, despite the more efficient virus replication, SARS-CoV-2 did not significantly induce types I, II, or III interferons in the infected human lung tissues. In addition, while SARS-CoV infection upregulated the expression of 11 out of 13 (84.62%) representative proinflammatory cytokines/chemokines, SARS-CoV-2 infection only upregulated 5 of these 13 (38.46%) key inflammatory mediators despite replicating more efficiently. CONCLUSIONS: Our study provides the first quantitative data on the comparative replication capacity and immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung tissues. Our results provide important insights into the pathogenesis, high transmissibility, and asymptomatic infection of SARS-CoV-2.


Sujets)
Betacoronavirus/physiologie , Infections à coronavirus/immunologie , Immunité innée/immunologie , Pneumopathie virale/immunologie , Virus du SRAS/physiologie , Réplication virale/immunologie , COVID-19 , Chimiokines/immunologie , Infections à coronavirus/virologie , Cytokines/immunologie , Humains , Interférons/immunologie , Poumon/immunologie , Poumon/virologie , Pandémies , Pneumopathie virale/virologie , SARS-CoV-2
SÉLECTION CITATIONS
Détails de la recherche